Strontium titanate is seeing increasing interest in fields ranging from thin-film growth to water-splitting catalysis and electronic devices. Although the surface structure and chemistry are of vital importance to many of these applications, theories about the driving forces vary widely. We report here a solution to the 3 x 1 SrTiO(3)(110) surface structure obtained through transmission electron diffraction and direct methods, and confirmed through density functional theory calculations and scanning tunnelling microscopy images and simulations, consisting of rings of six or eight corner-sharing TiO(4) tetrahedra. Further, by changing the number of tetrahedra per ring, a homologous series of n x 1 (n > or = 2) surface reconstructions is formed. Calculations show that the lower members of the series (n